Electrical impact of line-edge roughness on sub-45-nm node standard cells

نویسندگان

  • Yongchan Ban
  • Savithri Sundareswaran
  • David Z. Pan
چکیده

David Z. Pan The University of Texas at Austin Department of Electrical and Computer Engineering 2400 Speedway Austin, Texas 78712 Abstract. Since line-end roughness (LER) has been reported to be of the order of several nanometers and to not decrease as the device shrinks, it has evolved as a critical problem in sub-45-nm devices and may lead to serious device parameter fluctuations and performance limitations for future very large scale integration (VLSI) circuit applications. We present a new cell characterization methodology that uses the nonrectangular gate print images generated by lithography and etch simulations with the random LER variation. We systematically analyze the random LER by taking the impact on circuit performance due to LER variation into consideration. We observed that the saturation current, delay, and leakage current are highly affected by LER as the gate length becomes thinner. Results show that when the root mean square value of LER is 6 nm from its nominal line edge, the worst case saturation current, delay, and leakage current degradation are as much as 10.3% decrease, 12.4% increase, and 7× increase at a 45-nm-node standard cell. Meanwhile the current, delay, and leakage current degradation at a 32-nm-node cell are up to 19.0% decrease, 21.8% increase, and 4600× increase, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacitance variability of short range interconnects

End of the roadmap integrated circuit interconnects suffer from capacitance variability due to line edge roughness (LER), significantly impacting overall circuit performance. We forecast the capacitance variability of short range interconnects with realistic line edge roughness at the upcoming 45, 32, and 22 nm technology nodes using a fast TCAD capacitance tool. Capacitance variability is layo...

متن کامل

Sub-wavelength Lithography and Variability Aware SRAM Characterization

With shrinking of minimum feature size of advanced technology nodes, the impact of litho process variations on the resulting electrical parameters of printed circuits dramatically increases. Litho process variations correspond to random changes in the actual optical conditions (dose and focus) which develop at every mask exposure, hence from die to die. In this way the litho process variations ...

متن کامل

Intrinsic Parameter Fluctuations in Decananometer MOSFETs Introduced by Gate Line Edge Roughness

In this paper, we use statistical three-dimensional (3-D) simulations to study the impact of the gate line edge roughness (LER) on the intrinsic parameters fluctuations in deep decananometer (sub 50 nm) gate MOSFETs. The line edge roughness is introduced using a Fourier synthesis technique based on the power spectrum of a Gaussian autocorrelation function. In carefully designed simulation exper...

متن کامل

Analysis of Statistical Fluctuations due to Line Edge Roughness in sub-0.1μm MOSFETs

We present a full-3D statistical analysis of line edge roughness (LER) in sub0.1 μm MOSFETs. The modelling approach for line edges and the parameters used in the analysis take into account the statistical nature of the roughness. The results indicate that intrinsic fluctuations in MOSFETs due to LER become comparable in size to random dopant effects and can seriously inhibit scaling below 50 nm.

متن کامل

Intrinsic Fluctuations in Sub 10-nm Double-Gate MOSFETs Introduced by Discreteness of Charge and Matter

We study, using numerical simulation, the intrinsic parameter fluctuations in sub 10 nm gate length double gate MOSFETs introduced by discreteness of charge and atomicity of matter. The employed “atomistic” drift-diffusion simulation approach includes quantum corrections based on the density gradient formalism. The quantum confinement and source-to-drain tunnelling effects are carefully calibra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010